Early warnings: Floods prediction with climate models
The Columbia Water Center is developing an initiative to predict floods events around the world by using climate models to perform seasonal predictions.
The Columbia Global Flood Initiative, a new joint initiative of Columbia Water Center, the International Research Institute for Climate & Society (IRI), CICAR (the Cooperative Institute for Climate Applications and Research) and the Center for Climate Systems Research, seeks to better understand, predict and plan for extreme floods. The project is based on the conviction that while human beings may not have direct control of where and how much rain falls (the long-term effects of human-caused global warming notwithstanding) there is a great deal more that can be done to manage the risk of extreme flooding around the world. […]
Today, scientists have a much better understanding of how the global climate works than they did even a few years ago. As a result, phenomena such as flooding—once thought of as essentially random events–are increasingly understood as the result of predicable (if complex) climate patterns.
What this means is for any given part of the world it may be possible to forecast when and where the next extreme flood will occur, anywhere from a season to a year ahead of time. Global climate patterns that can affect where and when extreme floods will occur include El Nino/La Nina-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and other “climate precursors” such as ocean temperatures, or the amount of regional snowpack. […]
The implications are vast. Understanding when and where an extreme flood is likely to occur a season or even a year ahead of time could allow everyone from policymakers to reservoir managers to emergency responders better plan for what is coming.
This group of researches have been using a top-down approach to floods frequency, where they are mainly determined by climate. And of course they are. It would be interesting, however, to check how the ability of the ecosystem to deal with high precipitation discharges has been reduced by deforestation, or more precisely, by land use and land cover change. If such relation is strong, then it would offer a way to increase insurance to flood events.
Here you can read the complete note on the State of the Planet blog:
Before the Flood—Predicting the Deluge – Water Matters – State of the Planet.
and here you can find an interesting video of a successful application of the early warning system to flooding events in Western Africa in 2008. If you feel like diving into the literature in your Easter holidays, there is a couple of interesting papers:
River Flood Forecasting Using Complementary Muskingum Rating Equations
Floods frequency: New regime shift coming soon
Floods frequency is tricky example of a regime shift. I have not idea yet whether it can be considered one. However, it seems so; and it seems to be driven by deforestation. The more deforested and fragmented a landscape is, the less likely it is to retain water coming from strong rainfall events. Vegetation speed down water drops, and root-rich soils with high porosity retain more humidity. When soils are clean or barely vegetated, one would expect water to run down faster.
On the top of this idea, it seems that climate change and green house gas emissions are playing an important role. NewScientist recently reports a study by Pal and colleagues titled “Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000“. They comment:
This week, a study has shown that the devastating floods which damaged nearly 10,000 properties in England and Wales in 2000, and cost £1.3 billion in insurance losses, were made significantly more likely by climate change caused by humans.
It is the first study to quantitatively link a severe rainfall event and climate change. The team that carried out the work, led by Myles Allen of the University of Oxford, had earlier linked the 2003 European heatwave to climate change.
…
The bottom line of all this? Allen and his team found that human greenhouse gas emissions “significantly increased” the likelihood of the 2000 floods. They can say, with a 66 per cent confidence level, that emissions nearly doubled the risk of the 2000 floods.
Conversely, says Allen, there is only a 10 per cent chance that the increase in flood risk rose by just 20 per cent as a result of human contributions to climate.
Here some more comments from NatureNews:
The research directly links rising greenhouse-gas levels with the growing intensity of rain and snow in the Northern Hemisphere, and the increased risk of flooding in the United Kingdom […]
“We can now say with some confidence that the increased rainfall intensity in the latter half of the twentieth century cannot be explained by our estimates of internal climate variability,” she says.
The findings mean that Northern Hemisphere countries need to prepare for more of these events in the future. “What has been considered a 1-in-100-years event in a stationary climate may actually occur twice as often in the future,” says Allen.
“Governments plan to spend some US$100 billion on climate adaptation by 2020, although presently no one has an idea of what is an impact of climate change and what is just bad weather,” says Allen […] “If rich countries are to financially compensate the losers of climate change, as some poorer countries would expect, you’d like to have an objective scientific basis for it.”
For the interested reader:
Hawaii will face more frequent cyclones – New Scientist
NewScientist reports:
Tim Li of the University of Hawaii in Honolulu used two climate models to forecast cyclone formation. When he factored in the impact of global warming, he found that by the end of this century, the frequency of tropical cyclones will have fallen by 31 per cent over south-east Asia and grown by 65 per cent over the north central Pacific Geophysical Research Letters, DOI: 10.1029/2010GL045124.
via Hawaii will face more frequent cyclones – environment – 01 October 2010 – New Scientist.
Extreme cold event collapse fishery and induce hypoxia in Bolivia rivers
Last week, the World Water Week was held in Stockholm. According with Swedish newspapers, one of the issues more debated was increasing variability of rainfall in the northern hemisphere summer, which lead to sounded headlines related to fires in Russia and floods in Pakistan.
However, the southern hemisphere was no the exception, in such case suffering of extreme events presumably due to climate change. NatureNews reports that the unprecedented wave of cold in Bolivia killed at least 6 million fish and thousands of other animals related with riverine ecosystems. They add the following on the ecosystem services affected:
The extraordinary quantity of decomposing fish flesh has polluted the waters of the Grande, Pirai and Ichilo rivers to the extent that local authorities have had to provide alternative sources of drinking water for towns along the rivers’ banks. Many fishermen have lost their main source of income, having been banned from removing any more fish from populations that will probably struggle to recover.
The blame lies, at least indirectly, with a mass of Antarctic air that settled over the Southern Cone of South America for most of July. The prolonged cold snap has also been linked to the deaths of at least 550 penguins along the coasts of Brazil and thousands of cattle in Paraguay and Brazil, as well as hundreds of people in the region.
Water temperatures in Bolivian rivers that normally register about 15 ˚C during the day fell to as low as 4 ˚C.
The causes, however, remain unknown and open an active front for South America research. Interestingly, among the causes proposed there is a feedback mechanism related with hypoxia; given that the cold temperature can reduce water mixing, causing in turn lower oxygen levels. Other interactive drivers proposed are disease outbreaks and pollution.